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Abstract

Deformation bands confined to a 9-m-thick layer of the Entrada Sandstone in Utah accumulate less displacement per unit length than
fractures that are not stratigraphically confined. This difference in displacement—length (D—L) scaling is related to the increasing length-to-
height (aspect) ratio of the bands. Here we derive new expressions for displacement—length scaling and fracture strain for three-dimensional
(3-D) elliptical fractures. The maximum (relative) displacement D,,,, on an elliptical fracture surface depends on the fracture geometry (both
length L and height H), the end-zone length (through driving stress and the rock’s yield strength), and the properties of the surrounding rock
(modulus, Poisson’s ratio). A given elliptical fracture will show different values of D, /L in horizontal and vertical sections due to
differences in fracture dimension (length vs. height) and end-zone length. A population of elliptical fractures can accommodate less
displacement or strain if fracture aspect ratios increase with L than a population of fractures having constant aspect ratios. These relationships
reveal how 3-D fracture geometries systematically influence the population statistics. The magnitude of horizontal (extensional) fracture
strain accommodated by the population of deformation bands predicted by the analysis is consistent with that obtained independently from
traverse measurements on the outcrop (0.12%). The 3-D fracture geometry can contribute at least an order of magnitude in displacement
deficit (or excess) relative to tall 2-D fractures and comparable scatter on maximum displacement vs. length (D—L) diagrams. In general,
fractures confined to stratigraphic layers grow nonproportionally (L/H # constant for L > the layer thickness), leading to reduced capacity to
accommodate displacement and a shallower slope on the D—L diagram. Similarly, fractures that grow by segment linkage (preferentially
down-dip or along-strike) scale as nonproportional 3-D fractures. A unit slope on D-L diagrams implies proportional growth (L/H =
constant). Faults with slip surfaces and other fractures with nonpreferred growth directions can produce unit slopes, so that particular
trajectories on D—L diagrams can reveal physical controls on fracture growth, such as stratigraphic confinement or segment interaction and
linkage. © 2002 Published by Elsevier Science Ltd.
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1. Introduction and background

Displacement-length (D—L) scaling of fractures is under-
stood by using two-dimensional (2-D) fracture mechanics
models (e.g. Cowie and Scholz, 1992b) that assume plane
conditions (e.g. [rwin, 1962; Heald et al., 1972; Palmer and
Rice, 1972; Rudnicki, 1980; Kanninen and Popelar, 1985,
pp- 69, 153; Biirgmann et al., 1994). In rock mechanics, a
2-D analysis idealizes a volume with fractures as a
rectangular plate in an xy (Cartesian) coordinate system,
with the vertical (z, ‘thickness’) dimension included only
implicitly (Timoshenko and Goodier, 1970, pp. 15-17;
Tada et al., 2000, pp. 14—15). The thickness of a ‘thin’
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(plane stress) 2-D plate is negligible compared with the
in-plane (xy) dimensions, so that in-plane stresses (o,
Oy, Oy) can produce warping and strain of the plate in
the out-of-plane (z) direction. In contrast, the thickness of
a ‘thick’ (plane strain) plate is sufficiently large to prevent
strain in the out-of-plane (z) direction in response to the
in-plane stresses. A fracture in a 2-D analysis is oriented
perpendicular to the in-plane directions so that variations in
stress or displacement in the z-direction are not introduced
(e.g. Paris and Sih, 1965; Anderson, 1995, pp. 23, 36, 56).
Looking down the thickness (z) direction onto the surface of
the plate, the planar fracture is represented as a line of length
L within the xy coordinate system. Because the vertical
(third, z) dimension is not considered explicitly in a 2-D
stress analysis, neither is the fracture’s height (its dimension
in the z-direction, H). In that 2-D analysis, the length and
displacement are associated (Fig. 1) without directly
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Fig. 1. Compilation of displacement—length data displayed on a traditional
2-D diagram. Deformation band (‘DB’) data from Fossen and Hesthammer
(1997; ‘DBs’ in the figure); fault data are from Cowie and Scholz (1992a,
and references therein), Gudmundsson and Backstrom (1991), Dawers et al.
(1993), Cartwright et al. (1995), Schlische et al. (1996) and Krantz (1988).
Dashed lines show contours of approximate 2-D fracture shear strain
Y = Dya/L.

considering the influence of fracture height, leading to the
standard D—L scaling relations that only incorporate dis-
placement and length (e.g. Muraoka and Kamata, 1983;
Cowie and Scholz, 1992a,b; Clark and Cox, 1996; Fossen
and Hesthammer, 1997; Renshaw, 1997; Gudmundsson,
2000; Bonnet et al., 2001).

In contrast, a 3-D stress analysis of a fractured rock mass
explicitly considers dimensions, stresses, and displacements
in all three (xyz) directions, including the fracture’s height
and shape. As noted by Segall and Pollard (1980), Scholz
(1982), Olson (1993), Nicol et al. (1996), Willemse (1997),
Martel and Boger (1998), Kattenhorn et al. (2000), Schultz
(2000), and others, fracture heights can be much smaller
than (or comparable with) their lengths, leading to different
D-L scaling relations (Willemse et al., 1996). Indeed,
several studies have shown that the shorter dimension
controls the displacement magnitude and associated fracture
interaction distance (Segall and Pollard, 1980; Pollard and
Segall, 1987; Olson, 1993; Pollard et al., 1993; Willemse,
1997; Cowie, 1998; Crider and Pollard, 1998; Gudmundsson,
2000).

A 3-D fracture is defined in this paper as an elliptical
surface with specified values of length, height, dip, and
maximum relative displacement in a 3-D xyz coordinate
system (e.g. Irwin, 1962; Kassir and Sih, 1966; Willemse,
1997; see Tada et al. (2000, pp. 14-15)) for terminology
particular to the small region near the fracture tip).
Physically, the maximum relative displacement (D,,,,) on

a fracture depends explicitly on both length L and height
H (e.g. Irwin, 1962; Kassir and Sih, 1966; Chell, 1977;
Willemse et al., 1996; Willemse, 1997; Martel and Boger,
1998), implying that the D—L scaling relations may differ
for a 3-D fracture from those that ignore fracture height (the
2-D plane approach discussed above). An explicit con-
sideration of the elliptical shapes of natural (3-D) fracture
surfaces can be critically important for understanding the
stresses and displacements in the vicinity of the fracture
(e.g. Olson, 1993; Willemse, 1997; Crider and Pollard,
1998; Kattenhorn et al., 2000), and by implication, the
balance between displacement accumulation and propaga-
tion of the fracture’s tipline (Rubin, 1992; Willemse and
Pollard, 2000). We demonstrate in this paper how the
D—-L scaling relations depend on both dimensions (length
and height) of the fracture plane.

Deformation bands from the Jurassic Entrada Sandstone
of southeastern Utah accumulate less displacement per unit
length than do well-developed faults (Fossen and
Hesthammer, 1997, 1998). These cataclastic deformation
bands (Aydin, 1978b; Aydin and Johnson, 1978; Davis,
1999; Fossen, 2000) are confined to a 9-m-thick (Aydin,
1978a) porous sandstone layer within the Entrada Sandstone
(Fig. 2) and also lack slip surfaces (Fossen and Hesthammer,
1998); deformation bands that accommodate larger, discon-
tinuous displacements (of more than several meters) along
corrugated slickensided slip surfaces transect the Entrada
Sandstone (Aydin, 1978b; Fig. 2c). The deformation
bands that lack slip surfaces scale according to Dy, = yL"
(Fossen and Hesthammer, 1997), whereas other fault sets
scale with an exponent closer to 1.0 (e.g. Cowie and Scholz,
1992a; Clark and Cox, 1996). Fossen and Hesthammer
(1997, 1998) hypothesized that the smaller exponent
(~0.5) for the deformation bands could be attributed to a
lesser degree of strain localization, with the exponent
increasing to 1.0 as they evolve into surfaces of discon-
tinuous displacement.

In this paper we derive displacement—length scaling
relations for elliptical fractures and apply them to strati-
graphically confined deformation bands. We show that the
maximum relative displacement (D,,,,) along a fracture is a
continuous, explicit function of both its length and height,
similar to the dependence of stress magnitude near an
elliptical cavity given by the well-known Inglis/Kolosov
relation (e.g. Timoshenko and Goodier, 1970, pp. 191-
194; Rekash, 1979, pp. 134—138). We then explore the
characteristics of this 3-D scaling relation on standard
displacement—length diagrams and demonstrate that lines
of constant 1.0 slope (with the associated values of fracture
shear strain ) are a special case of 3-D scaling in which
aspect ratios remain constant throughout the population.
The results reveal that the shallower (0.5) slope obtained
from deformation bands reported by Fossen and
Hesthammer (1997) is related to their 3-D geometry, and
we discuss the implications of 3-D D—L scaling for fracture
growth within stratigraphic layers and by segment linkage.
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Fig. 2. (a) Map showing location of study area in Goblin Valley. (b) Simplified geologic map showing location of yellow-gray porous sandstone layer (e;) and
strain traverse (dotted line) in relation to faulted deformation bands (heavy lines with symbol on hanging wall). (c) Block diagram showing stratigraphy of
study area and outcrop patterns of deformation bands (dipping lines in layer e;).

2. The 3-D deformation band data set (Aydin, 1978b; Fossen and Hesthammer, 1997; Davis,
1999). Recent work demonstrates that displacement distri-

Deformation bands in the Entrada Sandstone are narrow butions along deformation bands vary systematically with
tabular zones of localized compactional and shearing dis- position (Antonellini and Aydin, 1995; Fossen and

placement in an otherwise homogeneous stratigraphic layer Hesthammer, 1997, 1998; Wibberley et al., 2000), similar
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to those of other fracture types (e.g. Muraoka and Kamata,
1983; Walsh and Watterson, 1988; Biirgmann et al., 1994;
Gupta and Scholz, 2000). Displacement maxima occur far
from band terminations where near-tip displacement
gradients and band geometries (in outcrop) are consistent
with mechanical interaction and band linkage (Cruikshank
et al.,, 1991; Antonellini and Aydin, 1995; Fossen and
Hesthammer, 1997; Willemse, 1997). Propagation of defor-
mation bands appears related to stress changes induced near
their terminations (e.g. Du and Aydin, 1993; Antonellini
and Pollard, 1995) that, in turn, scale with the magnitude
of displacements accommodated across them. Although the
spacing between cataclastic deformation bands may be
related to strain hardening within the bands and the remote
strain distribution and magnitudes imposed on them (e.g.
Antonellini et al., 1994), their lengths are related to their
displacement distributions (Fossen and Hesthammer, 1997,
1998).

Nucleation and growth of deformation bands in sand-
stones are sensitive initially to porosity, grain size and sort-
ing, presence of clay minerals, confining pressure, and
differential stress and, with ongoing deformation, to the
changes in these characteristics (e.g. Aydin and Johnson,
1983; Antonellini et al., 1994; Menéndez et al., 1996;
Mair et al., 2000; Olsson, 2000; Bésuelle, 2001; Issen and
Rudnicki, 2001). Observations of deformation bands in the
field demonstrate that they can be confined to particular
stratigraphic layers, for which band localization is facili-
tated, with growth across stratigraphic contacts inhibited
where they encounter layers having unfavorable conditions
(e.g. Fossen, 2000). Confinement of deformation bands to
particular layers (e.g. Fig. 2a) is similar to joints, stylolites,
and other types of localized strain that are also highly
dependent on local stress state and lithologic properties
for their development. As stratabound fractures lengthen,
their aspect ratios increase, whereas their heights remain
fixed by the stratigraphic thickness.

The deformation bands considered in this paper are
confined to a well sorted and highly porous (i.e. ~20%)
eolian yellow-gray layer within the Entrada Sandstone
(Figs. 2 and 3a). The layer (‘e;” in Fig. 2c) is 9 m thick
(Aydin, 1978a; and verified by us in the field in May
2001) and is bounded above and below by red silty sand-
stone layers that lack well-developed deformation bands
(‘e;” and ‘cs” in Figs. 2c and 3b). Close examination of
the contact regions reveals that the deformation bands
within the yellow-gray layer consistently terminate at or
just beyond the contacts with the red silty sandstone layers
(Fig. 3c and d). The deformation bands span a range of
lengths (0.06 <L <104 m; Fossen and Hesthammer,
1997) but are confined to the yellow-gray layer (e;), requir-
ing that their heights be no more than the layer thickness, or
H =9 m. As a result, the three-dimensional shapes (length
vs. height) of the bands scale with their lengths, with bands
longer than 9 m becoming progressively less tall in relation
to their lengths (Fig. 4c). The aspect (Iength/height) ratios of

the deformation bands in the study area are largest for the
longest bands (I/H = 104/9 m = 11.6), giving the bands a
range of three-dimensional elliptical shapes. Faulted defor-
mation bands that accommodate much larger displacements
than those investigated in this paper (i.e. meters) are
characterized by discontinuous displacement across their
corrugated and slickensided surfaces (e.g. Aydin and
Johnson, 1978; Fossen and Hesthammer, 1997; Shipton
and Cowie, 2001). These faulted bands cut across

_______

o |<v Layer thickness ——bl

Height
H=2b

l

b |<—~— Length L =2a ——‘—P{

2-Dscaling | 3-D scaling

L=H
C =T

Fig. 4. (a) Geometry of dipping fracture planes within a layer. 3-D planar
surfaces have measurable horizontal (trace) lengths and heights (measured
in their planes); 2-D surfaces only provide measurements of their lengths.
(b) Geometric parameters for an elliptical fracture in 3-D, with trace length
L being twice the semi-horizontal axis (L = 2a) and height H being twice
the semi-vertical axis (H = 2b) of the dipping plane. A fracture having its
height much greater than its length (2b > 2a) is a ‘tall’ or ‘tunnel’ fracture
that penetrates deeply into the rock mass relative to its length. A circular,
equidimensional fracture (2a = 2b) is referred to as a ‘penny’ fracture. A
‘long’ fracture has 2a > 2b. For a 2-D plane fracture, height (2b) is
indefinitely large. (c) Diagram showing how fractures larger than the
layer thickness 7' can grow only in length at constant height, leading to
nonproportional growth and 3-D scaling.
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stratigraphic contacts in the study area (e.g. Krantz, 1988;
Fossen, 2000, p. 32; Figs. 2c and 3e).

3. Maximum displacement vs. fracture aspect ratio

We idealize a fracture as a degenerate (flat) ellipse having
length L = 2a, height H = 2b, and a (much smaller) magni-
tude of relative displacement, with the maximum value of
the relative-displacement distribution given by D, (Fig. 4).
A deformation band is modeled as an elliptical fracture.
Length is defined in this paper as the horizontal trace (or
map) length (Fig. 4a), whereas height is taken to be the
vertical (i.e. down-dip) dimension of the fracture surface
in its plane (cf. Watterson, 1986; Walsh and Watterson,
1988), following standard practice (e.g. Cowie and Scholz,
1992a,b; Dawers et al., 1993; Cartwright et al., 1995;
Willemse et al., 1996; Gudmundsson, 2000). We apply
results from elasticity theory and post-yield Elastic—Plastic
Fracture Mechanics (EPFM) to construct an equation that
explicitly relates Dy, length, and height, and we allow the
length of the end zone (s) to vary as a free parameter, rather

Table 1
Driving and resisting stresses for geologic fractures

than being prescribed up-front as a constant (e.g. Cowie and
Scholz, 1992b; Martel and Boger, 1998).

3.1. Elliptical (elastic) fracture shape

The stresses and displacements associated with an
elliptical fracture in an infinite homogeneous elastic
material are well known from Linear Elastic Fracture
Mechanics (LEFM; e.g. Green and Sneddon, 1950; Irwin,
1962; Kassir and Sih, 1966; Xue and Qu, 1999; Zhu et al.,
2001). The maximum (relative) displacement D,,,, on the
LEFM fracture surface is given by:

20 - b
D'“‘“_[ G "d](E(a,b)> M

in which o4 is the driving stress acting on the fracture (see
Table 1), v is Poisson’s ratio, G is the shear modulus (both
of the host rock), and @ and b are the semi-major and semi-
minor axes of the fracture (Fig. 4b), respectively. Driving
stress is defined as the net traction (thought of as acting on
the fracture) that leads to relative displacement of fracture

Term Symbol Fracture type Description Source
Resolved stress on fracture® S Crack Compressive normal stress Rubin (1993)
T, Fault State frictional strength Cowie and Scholz (1992b)
S ” State frictional strength Biirgmann et al. (1994)
o, DB® Resolved remote stresses This paper
s Crack Resolved tensile stress Bilby et al. (1963); Chell (1977)
Internal ‘strength’ b.c. P; ” Internal fluid pressure Rubin (1993)
o Fault Residual frictional strength Cowie and Scholz (1992b)
S ” Strength of slipping patch Biirgmann et al. (1994)
Tt ” Resistive (residual) Rudnicki (1980); Cooke (1997)
frictional stress
T DB Mixed-mode grain-network This paper
strength
Driving stress S—P) Crack Effective tension Rubin (1993)
(o, — 0y) Fault — Cowie and Scholz (1992b)
(S — Sw) ” Stress drop Biirgmann et al. (1994)
o Crack Remote (resolved) tension Heald et al. (1972); Chell (1977)
(o, — 0y) DB Excess over grain-network This paper
strength
End zone constraint o, Crack Cohesive stress Rubin (1993)
Ty ” Modulus of cohesion, Barenblatt (1962); Lawn (1993)
intrinsic toughness
o Fault Shear strength of Cowie and Scholz (1992b)
surrounding rock
Se ” Peak strength of end zone Biirgmann et al. (1994)
op DB Peak strength of end zone This paper
(0q—oy) ” Resisting stress in end zone This paper
Yield strength (o, — P) Crack Effective cohesive strength Rubin (1993)
(o9 — 0% Fault — Cowie and Scholz (1992b)
(S — So) ” — Biirgmann et al. (1994)
(o, — 09 DB Yield strength of end zone This paper

* Remote stresses resolved trigonometrically onto potential fracture plane; values applicable before fracture deforms and accommodates relative displace-

ments.
® DB: deformation band.
¢ b.c.: boundary condition.
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walls and concomitant amplification of stresses along the
fracture’s tip (in 2-D) or elliptical tipline (in 3-D). For joints
and dikes (Table 1), o4 is the resolved remote normal stress
component (usually compressive) minus the internal pore-
fluid pressure within the fracture (Pollard and Aydin, 1988;
Rubin, 1993). For faults, o4 is the maximum (static) fric-
tional strength minus the residual frictional strength of the
surface (Palmer and Rice, 1972; Rudnicki, 1980; Cooke,
1997). For deformation bands, the driving stress is related
to the remote compressive and shear stress components
resolved onto the band and the resistance of the band to
compaction (Das, 1983, p. 36), cataclasis, and localized
shearing o; (Table 1).

E(a,b) in Eq. (1) is the complete elliptic integral of the
second kind (e.g. Irwin, 1962; Kanninen and Popelar, 1985,
p- 153; Lawn, 1993, p. 33), which is given by:

a2 2 _32\?2
E(a,b) = T ) IR )
0 a?

where ¢ is amplitude of the elliptic integral (Boas, 1966,
pp. 410—413). Particular values of Eq. (2) can be obtained
by specifying a and b and using standard mathematical
tables to evaluate the integral (e.g. Beyer, 1987). For a
circular, ‘penny-shaped’ fracture (a =b), E(a,b)= /2,
whereas a long, 2-D fracture (a > b) yields E(a,b)=1
(see also Gudmundsson, 2000). This ‘shape factor’
(Eq. (2)) reduces both D,,,, and the associated stress inten-
sity factor relative to those for a tall 2-D fracture (e.g. Lawn,
1993, pp. 31-33). The maximum displacement on an
elliptical fracture (Eq. (1)) thus depends explicitly on both
a and b (Irwin, 1962; Willemse et al., 1996; Gudmundsson,
2000). Eq. (2) can be approximated for fracture mechanics
problems by a flaw shape parameter (Anderson, 1995,
pp- 115-116) £2:

1.65
E(a,b):.(lz\/l+l.464(%) (3)

This approximation is within 5% of the numerical solution
to Eq. (2) obtained from tabulated values listed in Beyer
(1987), as demonstrated in Fig. 5. {2 can be substituted
into Eq. (1) for E(a,b), permitting calculation of D, for
arbitrary fracture lengths and aspect ratios.

For an elliptical fracture, the half-length parameter b in
Eq. (1) must be modified to vary from a to b (Irwin, 1962;
Kassir and Sih, 1966). Using the factor:

2
\/sin20+ (%) cos26 “4)

in which 6 is the angle to a point on its tipline (Irwin, 1962;
Kassir and Sih, 1966; Fig. 4b), the radius of the ellipse r
(defined as the distance from the ellipse’s center to a point

1/Q

Q — ;
- H

;5 1 b>>a ]
51 (tall 2-D crack)

<

o

Q a=b

‘é’ %, (penny crack)

505 % .
o} ‘Q’

@) * a>>b

s s (long 2-D crack) |
8 0\’\ g |
= A A—
= [ R TR R R R B I
Y% 1 2 3 4 5 6 7 8 9 10

Aspect ratioa/b (length/height)

Fig. 5. Comparison of elliptical geometry factor 1/£2 (solid line, Eq. (3);
assumes half-length @ = 1) and numerical solution of elliptic integral (filled
symbols) as a function of fracture aspect ratio a/b. Upper panel shows detail
for a/b = 1.5 with £5% uncertainty in values of (2.

on its tipline) is given by:

2
- b\/sinze + (%) cos20 (5)

The equation for maximum (relative) displacement on an
elliptical fracture in an elastic medium, subjected to a
uniform driving stress (and assuming negligibly small end
zones in LEFM) is obtained by combining Egs. (1), (3), and
(5) to produce:

a\2
b,|sin%6 + (7) cos?6
21 — v) b
Drax = G 1.65
a\l
\/1 + 1.464(3)

Eq. (6) reduces to 2-D cases for the limiting values of r =a
and r=b. For a slice along the fracture’s horizontal axis
(the 2a direction), # = 0° and Eq. (5) yields a half-length of
a. For a vertical slice (along the 2b axis), 6 = 90° and Eq. (5)
yields a half-length of b. Similarly, for a tall 2-D, plane-
strain fracture (with b > a), the denominator (Eq. (3))
approaches 1.0; the increase in Eq. (3) with larger values
of aspect ratio a/b (Fig. 5) controls the well-known reduc-
tion in Dy,,, with elliptical geometry (specifically, with b/a;
Irwin, 1962; Willemse et al., 1996). Eq. (6) implies that the
D—-L scaling of 3-D elliptical fractures depends on both
length 2a and height 2b.

(6)
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3.2. End zone and effective driving stress

Consideration of end zones is important in 3-D D-L
scaling for several reasons:

1. Most geologic fractures do not reflect conditions of
small-scale yielding and LEFM (Cowie and Scholz,
1992b; Rubin, 1993) due to a combination of finite
(small) rock strength at the tipline and relatively large
ratios of driving stress to yield strength (e.g. Rubin,
1993). Measurements of the near-tip displacement
profiles for joints and dikes (Rubin, 1993; Khazan and
Fialko, 1995), faults (Dawers et al., 1993; Cartwright
and Mansfield, 1998; Cowie and Shipton, 1998; Moore
and Schultz, 1999), and deformation bands (Fossen and
Hesthammer, 1997) reveal large departures from the
ideal steep near-tip displacement gradients required by
LEFM, such as tapered or linear displacement distribu-
tions, whose maximum values (D,,,,) are also smaller
than those of an equivalent LEFM fracture.

2. End zones provide a physical basis for the linear dis-
placement—length scaling of geologic fractures (Cowie
and Scholz, 1992b). By replacing fracture toughness
(having units of MPam'?) by yield strength (having
units of MPa), a linear (proportional) relationship
between the maximum displacement and fault length
(e.g. Clark and Cox, 1996) is achieved. D, would
scale with L3/2, instead of L, for an LEFM fracture.

3. The effective driving stress o associated with Dy, on an
elastic—plastic fracture depends on the length of the end
zone, which in turn depends on both the ratio of driving
stress a4 (over the fracture’s fully yielded part) to yield
strength oy (over the end zone; Bilby et al., 1963; Heald
et al., 1972; Chell, 1977; Li and Liang, 1986) and the
fracture’s aspect ratio (Chell, 1977). Although some
workers specify particular values of end-zone length
(e.g. Cowie and Scholz, 1992b; Martel and Boger,
1998), others treat it as a free parameter given uncertain-
ties in actual values of driving stress o4 or yield strength
oy (e.g. Heald et al., 1972; Rudnicki, 1980; Li and Liang,
1986; Rubin, 1993; Biirgmann et al., 1994; Cooke, 1997;
Martel, 1997). As a result, the effective driving stress o}
acting on an elastic—plastic fracture depends explicitly
on both a/b and /0.

In this section we develop expressions for end-zone
length around the tipline of an elliptical fracture as a func-
tion of aspect ratio a/b and end-zone strength o /o .

We build on the approach pioneered for 2-D plane
problems by Dugdale (1960) and Barenblatt (1962) for
mode-I cracks, Palmer and Rice (1972) for mode-II slip
surfaces in overconsolidated soil, and Cowie and Scholz
(1992b) for faults in rock. Although the near-tip deforma-
tion mechanisms invoked by Dugdale (1960) and Barenblatt
(1962) were different (cohesive vs. plastic), the form of their
results is applicable to fractures having non-LEFM ‘end

zones’ in which the specific yielding mechanism may
depend on the fracture displacement mode (e.g. Cowie
and Scholz, 1992b; Rubin, 1993). Heald et al. (1972),
Chell (1977), Turner (1979), Li and Liang (1986) and
Ingraffea (1987) discuss applications of fractures with
sizable (non-LEFM) end zones in engineering, whereas
Rudnicki (1980), Li (1987), Martel and Pollard (1989),
Cowie and Scholz (1992b), Rubin (1993), Biirgmann et al.
(1994), Cooke (1997), Martel (1997), Cowie and Shipton
(1998) and Willemse and Pollard (1998) apply the approach
to 2-D fractures in rock. End zones around equidimensional,
‘penny-shaped’ fractures are calculated and discussed by
Chell (1977) and Martel and Boger (1998). In all cases,
fracture—surface displacements are modulated by end
zones that are sufficiently large that the limiting LEFM
solution is not appropriate. Mechanically, the end zones
attain lengths that exceed the Irwin plastic-zone dimensions
when the requirement for small-scale yielding conditions is
relaxed (e.g. Kanninen and Popelar, 1985, pp. 282-283).
This also modifies the shape of the relative-displacement
distribution, from elliptical to bell-shaped or linear (e.g.
Cowie and Scholz, 1992b; Biirgmann et al., 1994; Cooke,
1997).

We define the driving stress o4 on a deformation band as
(o, — o) and the yield strength o, of the end zone as
(0, — 0y) (see Table 1 and Fig. 6). We associate the end
zone bounding a deformation band with the area ahead of
the band within which the porosity locally increases and

A i
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1} end zone
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Fracture

c

Fig. 6. Distribution of stress (resolved on the fracture plane) near the tip of
an elastic—plastic fracture. Amplified stress due to fracture-wall displace-
ments (dashed curves) decays with distance from fracture tip to o, in the
surrounding unfractured rock. Length s of end zone is defined by a constant
value of yield (peak) stress o, Driving stress oy is the difference between
resolved remote stress o, and internal boundary value o (e.g. pore-fluid
pressure or residual frictional strength). Yield strength o, is the difference
between o, and internal boundary value o;.
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grain fracturing (for cataclastic bands) begins (e.g. Aydin,
1978b; Antonellini et al., 1994) in response to amplified
stresses near the band’s tipline (Fig. 6).

Sizable end zones are associated with a reduction in the
value of Dy, on the fracture (e.g. Biirgmann et al., 1994)
relative to the LEFM case that incorporates indefinitely
strong (and negligibly small) end zones with a fracture of
equivalent dimension. As emphasized by Rubin (1993),
however, the length of an elastic—plastic fracture can be
defined as either including or excluding the end zone
(Fig. 7, central panel). The former case corresponds to the
effective fracture length L =2(c + s) =2a in LEFM, in
which s is the length of the (small) plastic zone at the frac-
ture tip and a = (c + s) (see Fig. 7). Cowie and Scholz
(1992b) adopt L as the effective fault length for D-L

acos(@) ' *

—

0.2 -~ s=20%a

. | L . | R
60 30
ey
= cos-1 (d °
¢ =cos
20 )
Y.
Fig. 7. Upper panel relates the quantity o /o, to dimensions for yielded 2-D
fracture half-length ¢, end zone length s, and total effective (elastic—plastic)
fracture half-length a using the parametric angle ¢ = [(7/2)(o /0 )] (after
Kassir and Sih, 1966; Tada et al., 2000, p. 384). Lower panel shows depen-

dence of s/a and c/a on od/oy; s/la =< 0.2 shaded; expressions valid for s/
a < 0.86 and ¢ < 82° (dark shaded region).

scaling, following Rudnicki (1980) and Palmer and Rice
(1972). On the other hand, the latter case that defines the
fracture length L* by the ‘unyielded’ central portion (c),
excluding the end zone (s), is commonly used in engineering
fracture mechanics (e.g. Bilby et al., 1963; Heald et al.,
1972; Chell, 1977), with L* = 2¢. In LEFM, ¢ — a, leading
to little ambiguity in locating the fracture tip precisely, but
this may not be the case for geologic fractures (e.g. Rubin,
1993). In this paper we adopt the total, effective length
L=2(c + s), where s is the explicit, non-negligible length
of the end zone whose length may exceed the (negligibly
small) limiting value s given in LEFM.

In order to balance the singular near-tip elastic stresses
generated near an ideal fracture (and to eliminate the LEFM
singularity; Goodier, 1968), opposing stresses are defined
(using a Dugdale-type ‘cohesive’ end zone conceptualiza-
tion) to act across a narrow zone, coplanar with the fracture.
The length s of the end zone associated with a 2-D fracture,
written as the ratio of nonyielded (c) to effective (a) fracture
lengths (Bilby et al., 1963; Heald et al., 1972; Chell, 1977),
is:

< =cos<z ﬁ) (7a)
a 2 o,

or explicitly,

£:1—cos(fﬁ) (7b)
a 2 oy

in which o4 is the driving stress and oy is the (constant)
yield strength of the surrounding rock ahead of the fracture
tip (and in the end zone). The cosine function in Egs. (7a)
and (7b) relates the quantity o¢/oy to the dimensions for
nonyielded fracture ¢, end zone s, and total effective
(elastic—plastic) fracture half-length a (Fig. 7, upper
panel). For ¢ = [(7/2)(04/0y)]=0°, o,— o0, s— 0, and
LEFM conditions apply (Fig. 7, lower panel, right-hand
side). Smaller values of o, are associated with greater
end-zone lengths and larger values of ¢. These expressions
are considered appropriate for (oy/o¢) > 1.1 (Chell, 1977;
Kanninen and Popelar, 1985, p. 283), implying maxima for
s/a < 0.86 and ¢ < 82° (dark shaded region in Fig. 7, lower
panel). For the particular case of s = 0.2a adopted by Cowie
and Scholz (1992b) for faults (light shading in Fig. 7),
¢ =37°

End-zone length (Eq. (7b)) scales with driving stress and
inversely with yield strength. As demonstrated in Fig. 8a, as
the driving stress becomes small relative to the yield
strength (i.e. (o,/04) > 10), ¢/a— 1 and s/a — 0, approxi-
mating LEFM conditions (right-hand side of Fig. 8).
However, as the driving stress becomes larger relative to
the yield strength of the rock in the end zone, c¢/a decreases
and the end zone grows relative to the total effective fracture
half-length a. In this case, the effective driving stress acting
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Fig. 8. (a) Dependence of end-zone length s on end-zone strength o /0.
Solid curve for c/a, Eq. (7a); dashed curve for s/a, Eq. (7b). Dot indicates
value of oy/0q = 2.5 for s/a = 0.2. (b) Dependence of the effective driving
stress o, normalized by the driving stress on an LEFM 2-D (tunnel)
fracture oy, on the end-zone strength o/o. Dot shows og/oq = 0.5; Eq.
(8b) plotted.

over the elastic—plastic (‘post-yield’) fracture includes
the competing contributions from the driving stress oy
that acts over the entire length L = 2a, promoting relative
displacement of the fracture walls, and from the opposing
stresses within the end zone (defined by o, = (04 — 0y);
Table 1). We define an effective driving stress o acting
over the effective elastic—plastic fracture length 2a, for 2-
D fractures, as:

i) ()]

in which a is a constant for the 2-D fracture. Using Eqs. (7a)
and (7b) and rearranging, Eq. (8a) becomes:

U(T:Ud—a'yl:l—cos(g?)] (8b)
y

The effective driving stress given by Egs. (8a) and (8b) is
implicitly defined for unit half-length a (see Fig. 7a).
The effective driving stress for a 3-D elliptical fracture is

given by:

m Oy
) (Td_O'yI:l_COS<EO_—y):|
Tde = 2 1.65
J(cos20+ (é> sinzﬂ)(l + 1.464(%) )
a

The term oy in Egs. (8a) and (8b) corresponds to that
used by Cowie and Scholz (1992a; see Table 1) and Scholz
(1997) with, however, the explicit specification of an impor-
tant variable coefficient. For the particular case discussed by
Cowie and Scholz (1992b), s = 0.2a and o,/0q = 2.44 (see
Fig. 8), Eq. (8b) requires oj/oq=0.51 (Fig. 8b). By
explicitly evaluating the effective driving stress o; over
the total effective (elastic—plastic) fracture length 2a using
Egs. (8a) and (8b), the decrease in D,,,, with increasing s
(for a given fracture length 2a and shown explicitly by
Biirgmann et al. (1994)), is related to the reduction in
effective driving stress o acting over the fracture relative
to o4 (see Fig. 8b). The discrepancy between the effective
(o3) and LEFM-based driving stress (o) increases with
progressively smaller (weaker) values of yield strength.
For example, the discrepancy in driving stress is ~10%
for fractures having s = 1% of a (Fig. 7a; s/a = 0.01) and
>50% for s/a > 0.2. This variable coefficient (the vertical
scale in Fig. 8b) can be incorporated into the parameter C in
the Cowie and Scholz (1992a) term for fracture shear strain,
v=C(oy — 09)/G (see also Scholz, 1997). By explicitly
considering the relationship between effective driving stress
and end-zone length (Eq. (8b)), the curves for the curves for
3-D D-L scaling developed in this paper shift to smaller
values than the approximate 2-D contours of vy (diagonal
dashed lines in Fig. 1) by the factor o3/0 .

The change in geometry from 2-D (tunnel) to 3-D (penny)
fractures is associated with a decrease in end-zone length
relative to 2-D fractures (Fig. 9a). As shown in Fig. 9b,
assuming the same values for fracture length (2a), driving
stress, and yield strength, the end zone adjacent to a penny
crack is consistently smaller than that bounding a 2-D tunnel
crack. The smaller end-zone length is due to the greater
constraint on deformation imposed on the penny crack by
its fully bounded circular periphery, compared with the
tunnel crack that is bounded only along its vertical edges
(Chell, 1977; Martel and Boger, 1998). The reduction of
end-zone length with fracture geometry is associated
physically with a corresponding decrease in the value of
maximum displacement D,,,, for the penny crack relative
to the 2-D tunnel crack (2/7; e.g. Lawn, 1993, p. 32). Tall
elliptical fractures (b > a) should have values of end-zone
length intermediate between the tunnel and penny
geometries (e.g. Fig. 9b).

By substituting Eq. (5) into Eq. (7b), the length of the
end zone surrounding an elliptical fracture is given

®
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Fig. 9. (a) Comparison of theoretical end-zone lengths from the literature.
Dashed line shows s/a = 0.2. (b) Fracture aspect ratio a/b reduces end-zone
length at a given end-zone strength for 3-D (penny) fractures (a/b = 1;
lower curve) relative to 2-D (tunnel) fractures (b > a; upper curve). Filled
squares show values calculated by Martel and Boger (1998); coincident
curve for penny fracture is from Chell (1977). Filled dots and diamonds
show values calculated using Eq. (10) for tunnel and penny geometries,
respectively; error bars show *30% of Chell’s (1977) and Martel and
Boger’s (1998) values for the penny geometry. (c) Relative length of end
zone for tunnel fracture, compared with penny fracture, as a function of
yield strength. Horizontal shaded bars in (b) and (c) indicate range of
predicted end-zone strengths for length s = 0.2a. Vertical bars in (a), (b),
and (c) show limits of validity for theoretical end-zone lengths (o/
oq>~1.1).

approximately by:

a 2
b sin20+(g) cos?6
sz[l—cos(”'fd)] (10)
a 1.65
1+ 1.464( 2
\/ 6 (b)

As shown in Fig. 9b, the predicted length is within £30% of
that for the penny fracture as given by Chell (1977) and
Martel and Boger (1998). This difference is reasonable
given the idealization of near-tip yielding within a volume
as a planar zone (e.g. Bilby et al., 1963; Heald et al., 1972;
Li and Liang, 1986; Engelder et al., 1993) and uncertainties
of perhaps a factor of two for field estimates of the length of
an equivalent planar end-zone (e.g. Cowie and Scholz,
1992b).

Because the magnitude of D,,,,, is proportional to the level
of driving stress acting on the fracture (e.g. Pollard and
Segall, 1987; Eq. (1)), and for a given fracture size and
yield strength, end-zone length increases with D,,,,. Longer
end zones are generated to absorb the greater magnitudes of
near-tip stress associated with larger values of Dj.
Fractures of comparable length but with smaller values of
D,,.x would require smaller end zones (e.g. Li and Liang,
1986).

4. Characteristics of the elliptical (3-D) elastic—plastic
fracture

By combining the expressions for the maximum (relative)
displacement on an elliptical fracture in an elastic medium
(Eq. 6) with the effective driving stress for an elastic-plastic
fracture (Eq. (9)), the 3-D displacement-length scaling
relation becomes

P L)
G

T O'd
O'd_O'y 1_COS Ea'_y
b 2 1.65
(cos20 + (7) sinzﬁ)\/l + 1.464(%)
a

2
x b\/sin29+ (%) cos20 (11)

Scaling of maximum displacement and length for 3-D
elliptical fractures (Eq. (11)) depends on the properties of
the surrounding rock (modulus and Poisson’s ratio), the end-
zone length (through driving stress and yield strength), and
the ellipse geometry (6, a and b). The form of Eq. (11) is
similar to previous 2-D formulations (e.g. Cowie and
Scholz, 1992b) with the displacement—length ratio
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a/b. Filled symbols, 3-D scaling relationship from this paper (Eq. (11));
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2a. Calculations assume o,/0q =50, 6 = 0°, Poisson’s ratio of 0.25, and
shear modulus of 6.25 GPa.

proportional to the yield strength of the rock ahead of the
fracture tipline and inversely proportional to modulus (G).

Eq. (11) extends the standard two-dimensional displace-
ment—length scaling relation, for which fracture height 2b is
not considered (because 2b > 2a), to 3-D elliptical fracture
geometries. Dy, is an explicit function of fracture length
and fracture height in Eq. (11). Because a # b in general for
natural fractures (e.g. Nicol et al., 1996; Gudmundsson,
2000), displacement—length scaling relations will
necessarily depend on which length scale is chosen: the
horizontal length or the vertical height. The relationship
(Eq. (11)) assumes that the yield strength does not vary
significantly along the fracture periphery (Chell, 1977),
which appears reasonable for small fractures but perhaps
not for fractures large enough to transect differing
rheologies or for strongly interacting fractures (e.g. Gupta
and Scholz, 2000).

4.1. Variations in the main parameters

Willemse et al. (1996) compared the predicted values of
D« for elastic 2-D and 3-D cases that assume negligibly
small end zones (i.e. LEFM conditions). They showed that
Dy.x decreases systematically with increasing fracture
aspect ratio (a/b) but they did not develop the implications
for displacement—length scaling in further detail. The par-
ticular values treated by Gudmundsson (2000) for tall
(b > a), circular (a=b), and long (a > b) fractures also
match those used by Willemse et al. The scaling relationship
for elliptical fractures defined in this paper (Eq. (11) with
negligibly small end zones) compares favorably with the

results reported by Willemse et al. (1996), as shown in
Fig. 10. Relative to an indefinitely tall 2-D fracture
(b>a), a penny fracture can accommodate only about
60% (2/7) of the displacement on the tall fracture (large
dot on Fig. 10), whereas an indefinitely long 2-D fracture
(a>b) can accommodate less than one-tenth of the
displacement on the tall fracture of the same size (e.g. for
a/b > 8 in Fig. 10). As a result, standard 2-D approaches to
displacement—length scaling that neglect the effect of frac-
ture height (2b) may systematically overpredict the magni-
tude of Dy, on a particular fracture by at least an order of
magnitude. These errors will propagate through the popula-
tion statistics if aspect ratio is not explicitly accounted for.

The end-zone length (Eq. (10)) varies as a function of
position along the elliptical tipline, as shown in Fig. 11a
for several values of end-zone strength (/o). The length
at any point along the tipline depends additionally on that
fracture’s aspect ratio. For example, s is maximum for long
fractures (a/b = 10) along the vertical, semi-minor (8 = 90°
and r = b) axis and minimum along the horizontal direction
(semi-major axis, # =0° and r=a). For tall fractures
(Fig. 11b; inset to Fig. 11), s is maximum along the
horizontal direction (6 =0° and r = a). Comparison with
commonly cited values for s/a of ~0.1-0.2 (shaded bar in
Fig. 11a and b) suggests that knowledge of both the position
along a fracture’s tipline () and the fracture aspect ratio (a/
b) would be necessary to interpret the significance of end-
zone length for a given value of strength.

The ratio of maximum displacement D,,, to fracture
length L depends on both the position along the tipline
(Fig. 11c) and the fracture’s aspect ratio (Fig. 11d). Dy, /L
is maximized on fractures with stronger end zones and mini-
mized on those with weak end zones, supporting previous
suggestions (Cowie and Scholz, 1992b; Martel, 1997,
Moore and Schultz, 1999; Schultz, 1999; Wibberley et al.,
2000) that the yield strength of an end zone can modulate
the displacement—length scaling relations. Measurement of
D,,.x and L in either map view or cross-section, for the same
fracture, can produce substantial variation in Dy, /L due to
its sensitivity to the fracture’s aspect ratio.

4.2. The D-L diagram for 3-D fractures

The 3-D scaling relationship (Eq. (11)) can be plotted on
the standard log—log D,,.,/L diagram (Fig. 12, for horizontal
trace lengths, 6 =0°). Tall fractures (L <<2b) define a
positive 45° (1:1) slope (left side of diagram, dashed lines)
because D,,,x depends only on the length L (and not on the
height H = 2b, for given values of modulus and Poisson’s
ratio). The change in slope on the D—L diagram, from 1:1 to
shallower slopes, is related to the sensitivity of D—L scaling
of 3-D elliptical fractures to the fracture height 2b (e.g.
Willemse et al., 1996; Gudmundsson, 2000; Fig. 10). As a
fracture grows in length at constant height, its ability to
accommodate displacements degrades with increasing
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Fig. 11. Diagrams showing how end zones and maximum displacement/length ratio vary systematically with position along an elliptical fracture tipline and
with fracture aspect ratio. Upper row displays variation in end-zone length (Eq. (10)) with (a) end-zone strength, and (b) fracture aspect ratio, both as a function
of position along tipline of elliptical fracture. Shaded band in (a) and (b) shows typical range of end-zone lengths from the literature (0.1 < s/a < 0.2). Lower
row displays variation in maximum displacement/length ratio with (c) end-zone strength, and (d) fracture aspect ratio, as a function of position along tipline.
Shaded band in (c) and (d) shows typical range of displacement—length ratios for faults (e.g. Fig. 1). All calculations assume a yield strength of 10 MPa

(oy/oq=10), Poisson’s ratio of 0.25, and shear modulus of 6.25 GPa.

aspect ratio, leading to slopes shallower than 1:1 on the D—L
diagram (right-hand side of Fig. 12).

A family of D—L curves (calculated by using Eq. (11))
describes how maximum displacements on 3-D fractures of
various heights scale with their map lengths (Fig. 12). The
point on each curve that corresponds to an aspect ratio
a/b=1 (equidimensional or ‘penny-shaped’ fracture
geometry) defines the transition from a normal (1:1) and
constant slope to a shallower, nonlinear slope. Interestingly,

connecting the points on different curves for the same value
of aspect ratio (dots in Fig. 12b) produces a straight line,
with a constant slope of 1.0. Other parallel lines can be
constructed for other values of fracture aspect ratio (e.g.
line for a/b=10 in Fig. 12b). These lines defined by
constant values of fracture aspect ratio describe fractures
in a population that grow in a self-similar, proportional
manner; i.e. at a constant aspect ratio. In 2-D D,,,,/L scaling,
these lines are related to the constant of proportionality y
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Diagonal dashed lines show 2-D fracture shear strains calculated using
effective driving stress (oj/oy = 04142, Eq. (9)) for o,/oq=2.0
(s = 0.3a; Fig. 8). (b) Lines of constant aspect ratio are defined by points
along each curve having a/b = constant (filled symbols, a/b = 1). Calcula-
tions assume o/oq = 2.0, 0 = 0°, Poisson’s ratio of 0.4, and shear modulus
(see Section 4.2) of 1.6 GPa (G/oy = 80.3).

between D, and L (e.g. Cowie and Scholz, 1992b). In 2-D
cases, the aspect ratio implicitly remains constant during
fracture growth or for all members of the population
because only the fracture length (and not its height) is
considered. As Fig. 12 shows, the linear relationship in
2-D between D,,,, and L is a special case of 3-D scaling
that occurs for geometrically self-similar fractures (i.e.
constant aspect ratio, proportional growth).

The curves shown in Fig. 13 demonstrate how the
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Fig. 13. Dependence of D-L scaling on end zone strength, /oy, for
constant fracture height (26 =10 m). Calculations assume o,/0q= 50
(strong end zone), 5 (for a =0.005), 3, and 1.5 weak end zone) with
0 = 0°, Poisson’s ratio of 0.4 (bars on right border show 14% increase in
values of curves for 50% change in v to 0.2), and shear modulus of 1.6 GPa
(G/a4=80.3). Diagonal lines are contours of shear strain for 2-D fractures
as in Fig. 12. Shaded area shows plausible range of end zone strengths for
faults and deformation bands.

maximum displacement for 3-D elliptical fractures varies
(with L and a for given value of b) for a range of end
zone yield strengths oy. Dy, shifts downward on the
diagram (to smaller maximum displacements) for weaker
end zones (at given values of L and 2b; labeled curves in
Fig. 13), in accord with previous investigations of 2-D
scaling (e.g. Cowie and Scholz, 1992b). For a given fracture
height 2b, fractures of length L =2a can build up greater
values of maximum displacement as end-zone strength
increases. However, the horizontal position of the inflection
point in the curve (a = b) is unchanged. For example, very
strong end zones (o,/o4=150), approximating LEFM
conditions and small-scale yielding (s/a— 0), are asso-
ciated with values of D,,,, ~4 times greater than comparable
fractures that are bounded by weak end zones (o,/o4 = 1.5).
Thus, fractures in a strong rock, like granite, could accom-
modate larger displacements than those having identical
dimensions and driving stresses in a soft rock like a sand-
stone (given comparable values of modulus and Poisson’s
ratio for both rock types). For an actual fracture of given
length and height, D, will reflect a balance between end
zone strength, driving stress, and rock properties (e.g.
Eq. (11)).

Lines of constant D,,,/L ratio obtained from 2-D D-L
scaling relations (Cowie and Scholz, 1992b; Clark and
Cox, 1996) correspond to contours of fracture shear strain,
v=C(oy, — 09)/G (Cowie and Scholz, 1992b; Scholz,
1997). A fracture population that follows y = 0.01 would
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be characterized by values of maximum displacement that
scale linearly with fracture length, with y =0.01 corre-
sponding to a fracture shear strain (Jamison, 1989; Wojtal,
1989) of 1%.

The fracture shear strain that is accommodated in an
elliptical fracture’s plane is given using the 3-D scaling
relations by D,.,/L = a. Specifically:

Dmax
L

=« (12a)

in which

[0,

e O-d
Oq — O'yI:l - COS(E ()'_y)]
b 2 1.65
J(coszﬁ + (—) sinze)\/l n 1.464(%)
a

(12b)

X

and L being given by twice the term r from Eq. (5) in
Eq. (12a). The dimensionless fracture shear strain
(Eq. (12b)) increases with driving stress, end zone yield
strength, and Poisson’s ratio, and decreases with modulus
and fracture aspect ratio. Values of fracture strain also
depend on the position around the fracture tipline; for strain
in the horizontal plane, § = 0°.

We note that the values of fracture shear strain -y in the
2-D approach also depend on the end-zone length, the maxi-
mum displacement, and, in turn, on the effective driving
stress on the elastic—plastic fracture (Eq. (9)). In their
study of faults, Cowie and Scholz (1992b) inferred driving
stresses in the order of 100 MPa and a shear modulus of
10 GPa (resulting in G/oy= 100). Smaller driving stresses
(or ‘stress drops,” e.g. <1 MPa; Martel and Pollard, 1989)
may be used to represent individual seismic slip events
having D,,,/L = 10°-107, whereas the larger cumulative
geologic offsets on faults (Scholz, 1997) having
Dna/L = 10"-107 may be represented by cumulative
driving stresses on the order of 100 MPa (e.g. Cowie and
Scholz, 1992b). Using Eq. (11), the factor C required in the
expression for y (e.g. Scholz, 1997) is incorporated either
by adjusting the magnitudes of the driving and yield stresses
o4 above 1 MPa (e.g. o4=100 MPa and o, = [(g,/0,) X
oq] = (1.5 X 100) = 150 MPa) or by reducing the modulus
by an equivalent amount (e.g. G/100 = 16 MPa). The factor
C. and Egs. (12a) and (12b) allows more precise values of
fracture strain to be obtained from the D-L scaling
relations.

Constant values of y (and constant 45° slopes on the D—L
diagram) are obtained for 3-D elliptical fractures that are tall
compared with their lengths (2b > L; see Fig. 13, dashed
diagonal lines, left-hand side of diagram). The constant
slopes imply that the tall 3-D fractures approximate 2-D

ones that scale with length only, independently of their
heights. The values of vy are influenced by the strength of
the fracture’s end zone (Eqs. (12a) and (12b)). For given
values of driving stress and rock-mass properties (modulus,
Poisson’s ratio appropriate for sandstone; see caption to
Fig. 12 for values), a weak end zone (o,/oq=1.5) leads
to Dp/L= a =10.0017, or 0.17% (bold curve in Fig.
13). D—L ratios increase for stronger end zones by a factor
of ~4 at o,/04= 150, appropriate to an LEFM fracture in
perfectly elastic surroundings (Fig. 8). For end zone
strengths between 1.5 and 2.5 (see Fig. 8), the D—L ration
varies by =50%.

The value of fracture shear strain (Egs. (12a) and (12b))
accommodated by a fracture population described by the
3-D scaling relation remains constant for a given value of
end-zone strength (other parameters held constant).
However a constant fracture shear strain is not achieved
for stratibound fractures (a/b # constant) because the
slope of the D—L relation is nonlinear. This result parallels
the decrease in a fracture’s ability to accommodate dis-
placements as its aspect ratio increases (Willemse et al.,
1996; Fig. 10) and implies that, in general, a fracture’s
shape (a, b) must balance its maximum displacement
(Dpay) for a constant fracture strain to be maintained within
a population.

In summary, for fractures that are much larger in height
than in length (a < b; left side of Fig. 14), the shorter
(length) dimension controls the magnitude of displacement
on the ‘tall’ fracture (e.g. Gudmundsson, 2000). In this case,
Dy.x and L scale linearly, and 2-D scaling relations and

e ]
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1 10 102 103
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Fig. 14. Comparison between 2-D and 3-D scaling relations. The 3-D
results converge toward the 2-D values of y (fracture shear strain, dashed
lines in shaded region) for tall fractures (a/b <0.2). Curve shown
calculated using Dy, /L =0.00275, b=10m, o,/04=2.0, 6 = 0°, Pois-
son’s ratio of 0.4, and shear modulus of 1.6 GPa (G/oy = 80.3).
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analyses such as those in use in the literature apply (e.g.
Cowie and Scholz, 1992b; Biirgmann et al., 1994;
Cladouhos and Marrett, 1996; Clark and Cox, 1996;
Schlische et al., 1996). For long fractures (a > b; right
side of Fig. 14), the smaller fracture height dominates the
control on displacement, leading to a shallower, nonlinear
slope on the D,,,/L diagram (Fig. 14). Three-dimensional
scaling relations apply where length is more than ~5 times
the height (i.e. a/b > 0.2; unshaded region of Fig. 14).

5. Application to deformation bands in Utah

The deformation bands that are confined to layer e of the
Entrada Sandstone define a characteristically shallow slope
(<1) on the D-L diagram (Fossen and Hesthammer, 1997)
over the full range of band lengths. This data set, which
motivated the 3-D analysis of D-L scaling, allows the
predictions of population strain and displacement—length
scaling of elliptical fractures to be tested against field data.

In order to independently evaluate the predictions of
fracture strain from the 3-D scaling relationship
(Eq. (12b)), we measured the frequency and normal dip-
slip offsets of a representative sample of unfaulted
deformation bands from the outcrop (Figs. 2b and c and
3a). Fifty-eight bands were measured along a 50-m-long
linear (and horizontal) traverse oriented at 220° (Fig. 15b
and c), normal to the strike of the fault surface (that
nucleated within a cluster of deformation bands) shown in
Fig. 3e. The bands define two complementary (conjugate)
sets of orientations striking ~280° and dipping 60—85° NE
and SW (Fig. 15a), and plane subhorizontal extension along
the direction perpendicular to the mean azimuth of the bands
(200 = 10° star in Fig. 15a). Using the calculated horizontal
components of offset obtained from the strike (e.g. Peacock
and Sanderson, 1993; Priest, 1993, pp. 96—97) and dip of
each band, we find a cumulative extensional (horizontal)
strain of 0.12% (Fig. 15¢) along 200° (star in Fig. 15c¢).

In order to compare the fracture shear strains from the
population statistics to the measured strain along the
traverse, the predicted band-parallel fracture shear strains
a (Egs. (12a) and (12b)) are converted to the horizontal
fracture strains €, by using:

€, = a(cosd) (13)

in which & is the average dip of the bands and 6 = 0° (in
Eq. (11)). Using the average dip angle of 65° measured
along the traverse, the horizontal (extensional) component
of the fracture strain €, is reduced to 43% of the band-
parallel fracture shear strain a. We varied the parameters
in Egs. (12a) and (12b) to determine the range of values
consistent with the D-L scaling relations (Fossen and
Hesthammer, 1997) and horizontal strain measured
independently along the traverse. To achieve a horizontal
fracture strain €, of 0.12%, the values are
3.0 < E <5.0GPa (corresponding to a shear modulus G

d
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Fig. 15. (a) Equal-angle stereonet showing planes and poles to 58 deforma-
tion bands measured along traverse (see Fig. 2b). Cylindrical best-fit shown
as great circle oriented at 200 = 10° azimuth (star). Dashed line A—-A’
shows 220° orientation of horizontal traverse line. (b) Frequency of
deformation bands along NE—SW traverse, averaging 1.16 bands/meter.
(c) Graphical solution for azimuth containing maximum cumulative strain
(star and arrow) relative to orientation of traverse (dashed line A—A").

of 1.1-1.8GPa), 02<v <04, 1.5<0/04<2.5, and
60° < 6 < 70°. The variations listed for Young’s modulus
E (*25%), Poisson’s ratio (£50%), end zone strength
ooy (£25%), and band dip angle (£10%) collectively
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Fig. 16. Dy,/L data for deformation bands plotted as a function of
fracture aspect ratio a/b, indicating dependence of Dp,,/L scaling of
deformation bands on fracture shape rather than just their lengths
(L=12a). Data from Fossen and Hesthammer (1997). Tick marks on
symbols show direction of qualitative uncertainties in Dy, associated
with linkage geometries.

lead to an uncertainty in €, of less than a factor of two. The
horizontal fracture strain can be increased by using
shallower dips, smaller modulus, smaller Poisson’s ratio,
and/or stronger end zones. Increasing the modulus by a
factor of 10 (keeping band dip and Poisson’s ratio constant,
as above) also predicts the strain value (0.12%) as long as
the driving stress is also increased by a factor of 10, so that
G/o4=80.3 in both cases. However, increasing the end-
zone strength to LEFM levels (o,/o4 > 50) is not sufficient
by itself to balance the larger value of G and thereby predict
the same value of fracture strain (0.12%). Given particular
values of rock properties (G, v) and end zone strength
(ay/0y), the driving stress oy must be varied to predict
particular values of fracture strain using Eq. (11).

The 73 measurements of D, and L reported by Fossen
and Hesthammer (1997) from the 9-m-thick layer within the
Entrada Sandstone (‘e;” in Figs. 2c and 3) are plotted as a
function of aspect ratio in Fig. 16 (using a maximum thick-
ness 2b of the porous sandstone layer of 9 m). Values of
D,.x/L that are independent of aspect ratio, and hence the
vertical fracture height, would cluster about horizontal lines
on the diagram; such clustering is not observed. In contrast,
the data suggest a reduction in D,,,,/L with increasing values
of fracture aspect ratio a/b by a factor of at least 5-10,
particularly for aspect ratios greater than one. We infer
that the 3-D fracture geometry influences D,/L ratios
within the study area.

Deformation bands coded by their map-view geometry
(on the subhorizontal surface of the outcrop (Fig. 3a);
Fossen and Hesthammer, 1997) are shown in Fig. 16.
Isolated deformation bands (filled diamonds in Fig. 16)
are widely separated from other bands. The lengths of

closely spaced bands that interact mechanically with others
(called ‘soft-linked’ in the literature) to form stepovers and
eye structures (Cruikshank et al., 1991; Antonellini and
Aydin, 1995; Fossen and Hesthammer, 1997) are difficult
to assess precisely without quantifying the degree of inter-
action for each band segment (e.g. Segall and Pollard,
1980). Band segments in a soft-linked array plotted by
using their individual lengths (open triangles in Fig. 16)
exhibit excessive values of Dy, for their lengths (tick
marks adjoining symbols in Fig. 16) because the influence
of the other segments is not included (e.g. Segall and
Pollard, 1980; Willemse, 1997). On the other hand, the
aggregate length of the interacting array (open circles in
Fig. 16) will appear underdisplaced relative to a continuous
band of equivalent length. Linked arrays of deformation
band segments (‘hard-linked systems’; filled squares in
Fig. 16) may also exhibit somewhat smaller values of
D,.x than found for continuous bands with the reduction
related to the degree of roughness and linkage history of
the band. Additional uncertainties could be added to all
four groups of deformation bands to account for linkage
geometries in the vertical, down-dip direction given
appropriate observations (not available from the study
area).

The data replotted on a traditional displacement—length
diagram (Fig. 17) show that a power-law slope of approxi-
mately 0.5 (heavy line in Fig. 17a) could be used to describe
the population (Fossen and Hesthammer, 1997, 1998). This
best-fit slope of 0.5 (Fossen and Hesthammer, 1997) is
significantly shallower than power-law slopes of 1.0
(dashed line in Fig. 17a) inferred for faults from a wide
range of rock types (Cowie and Scholz, 1992a; Clark and
Cox, 1996). We infer that the shallower slope occurs
because the deformation bands—as a population—do
not maintain a constant aspect ratio over the length scale
shown.

According to the calculations reported by Willemse et
al. (1996) and others, fractures having heights less than
3-5 times their lengths should scale as 3-D surfaces.
Inspection of Fig. 17a shows that bands having
L<~3m, or 1/3 the stratigraphic thickness, may be
qualitatively consistent with the 2-D proportional growth
slope of 1.0 (dashed line in Fig. 17a). Proportional
growth of penny-shaped fractures (¢ =b) would follow
a slope of 1.0, as demonstrated in Fig. 13b, by cutting
across curves for different values of b. Because the
slopes of the proportional and nonproportional curves
are parallel for aspect ratios less than one, however, it
may not be possible to distinguish between them for this
range of relative lengths using statistics alone (see also
Fig. 14). On the other hand, the scaling of longer defor-
mation bands is consistent with nonproportional growth
and constant fracture height. Given these uncertainties,
we conclude that nonproportional growth will be most
clearly demonstrated on a D,,/L diagram for fractures
having aspect ratios greater than one (Fig. 17b); when
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Fig. 17. Displacement—length scaling of deformation bands (data from
Fossen and Hesthammer, 1997); symbols and tick marks as in Fig. 16.
(a) Linear fits to the data; proportional growth curve (dashed line,
slope = 1.0), least-squares regression (gray curve), Dp. = 0.002 L%,
r*=0.775. (b) 3-D scaling relations fitted to the data calculated using
Eq. (11) with 2b=9m, o/oq=2.0, 6 =0° Poisson’s ratio of 0.4,
8 = 65° and shear modulus of 1.6 GPa (G/oy = 80.3). Gray curve shows
value of horizontal fracture strain from traverse (0.12%).

combined with shorter fractures of the same population,
the aggregate power-law slope for the data set will be
less than one.

The value of horizontal fracture strain obtained from
the traverse (0.12%) agrees with the range predicted for
the deformation band population from the 3-D analysis
(Fig. 17b) using the parameters noted above. Given this
correspondence, the yield strength of the end zones
bounding deformation bands in the study area is probably
small (o,/0q<2.5; see Figs. 8 and 13). Significantly

Proportional growth (a/b = constant)

o‘n mo

g O (0
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Fig. 18. Examples of fractures growing at constant aspect ratio (propor-
tional growth, (a)—(d)), for which traditional D, /L scaling relationships
and constant slopes of 1.0 may apply, and fractures growing with increasing
aspect ratio ((e) and (f)). Ellipses represent individual fracture surfaces,
rectangles are interacting and/or linked fracture segments.

larger values of end-zone strength would be associated
with steeper near-tip displacement gradients (see Fossen
and Hesthammer, 1997, for measurements) and with
pervasive secondary structures nucleating near the tips
(e.g. Cooke, 1997) of individual, isolated bands; neither
of these is observed in the study area. A ratio of shear
modulus to driving stress (G/oy) of 80—800 is implied by
the values of fracture strain, end-zone strength, and link-
age geometry (Figs. 16 and 17) for the population of
deformation bands.
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6. Discussion and implications

In order for fractures to define a linear scaling relation
between maximum displacement and map length, and
thereby to define a slope of one on log—log displacement—
length diagrams, they must grow in size either two-
dimensionally—as ‘tall’ fractures—or proportionally,
either of which implies growth at a constant aspect ratio
(Fig. 18a—d). Proportional growth requires that 3-D
(elliptical) fractures increase in height as they lengthen.
The range of variations in a fracture’s aspect ratio contri-
butes a factor of perhaps 5-10 in its displacement values,
potentially leading to this degree of scatter on Dy/L
diagrams (e.g. Willemse et al., 1996; Gudmundsson,
2000). The scatter should be systematic, however, given
that increasing fracture aspect ratio is associated with
decreasing displacement magnitudes per unit fracture
length. This effect is consistent both qualitatively and
quantitatively with the shallower slope of D,,,/L data for
deformation bands that are confined within a particular layer
(e;) of the Entrada Sandstone (Fossen and Hesthammer,
1997; Fig. 17).

Confinement of fractures such as deformation bands

(e.g. Aydin, 1978b; Davis, 1999), small faults (e.g. Gross,
1995; Gross et al., 1997; Ackermann et al., 2001; Wilkins
and Gross, 2002), and joints (e.g. Bahat and Engelder, 1984;
Engelder, 1987; Pollard and Aydin, 1988; Helgeson and
Aydin, 1991) to discrete stratigraphic layers (e.g. Fig. 4c)
or by crustal rheology (e.g. Scholz, 1982; Cowie, 1998) has
been well documented in the field and in the literature. This
confinement, and associated preferential growth to larger
aspect ratios, can occur when the stress and/or lithologic
conditions in adjacent stratigraphic layers are unfavorable
for propagation of the fracture into those layers (Fig. 18e
and f). Assuming a uniform driving stress, the propagation
energy (Pollard and Aydin, 1988) along elliptical fractures
is greatest along their (smaller) semi-minor axis directions
(Irwin, 1962; Kassir and Sih, 1966), leading to steeper
displacement gradients and longer end zones in that direc-
tion (2b) than elsewhere along the periphery. However,
propagation of fractures that impinge on stratigraphic
contacts between dissimilar layers will be enhanced or
impeded depending on the relative material properties and
associated stress states (e.g. Pollard and Aydin, 1988;
Helgeson and Aydin, 1991). Impeded fault propagation
can lead to increased values of displacement, steeper
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displacement gradients (Gupta and Scholz, 2000), and, if the
stratigraphic thickness along this (2b) direction is smaller
than that required for the end zone to balance the near-tip
stresses, smaller end zones (e.g. Martel and Pollard, 1989).
The fracture will be trapped within its layer if these elevated
near-tip stresses cannot meet the new yield criteria across
the interface (e.g. Cooke and Underwood, 2001), leading to
nonproportional growth.

Initially, growth of bands that are sufficiently small to not
impinge on layer boundaries may be proportional (Fig. 19a).
Trapping of the band within a layer leads to increasing
aspect ratio, nonproportional growth, and a shallowing
slope on the D, /L diagram (Fig. 19a; Fossen and
Hesthammer, 1997, 1998). Once a faulted band breaks
through the layer, however, it can follow a steeper trajectory
on the D,,,/L diagram until it becomes confined within a
thicker sequence (Fig. 19a). Fossen and Hesthammer (1997)
inferred a steeper growth path (e.g. Nicol et al., 1996) that
connected deformation bands within the Entrada Sandstone
to the larger faulted bands studied by Krantz (1988). We
suggest that a decrease in aspect ratio, leading to the steeper
growth path (Fig. 19a), was enabled by the nucleation of
fault slip surfaces on the bands that facilitated their ability to
cut across stratigraphic boundaries.

Linkage of deformation bands, or fractures in general,
leads to trajectories on the D,,/L diagram analogous to
the effect of a confining stratigraphy (Fig. 19b). Because
along-strike (horizontal) linkage serves to increase aspect
ratio, linked arrays behave as ‘longer’ elliptical fractures
that can accommodate less displacement per unit map
length than their 2-D (‘tall’) counterparts, as recently
demonstrated in numerical simulations (Willemse and
Pollard, 2000). Fractures and arrays that increase in length
L by segment linkage must follow a progressively shallow-
ing growth path on the D,,,,/L diagram (Fig. 19b). On the
other hand, down-dip (vertical) linkage increases 2b instead
of 2a, leading to a decrease in aspect ratio (to ‘taller’ frac-
tures) and an increase in the relative amount of displacement
accommodated along the aggregate fracture. Down-dip
linkage (by itself, with no increase in L) would be associated
with vertical growth paths on the D,,,,/L diagram (Fig. 19b).
These growth paths, defined by the aggregate fracture aspect
ratio, provide a physical basis for the ‘stair-step’ growth
sequence proposed by Cartwright et al. (1995). Fracture
growth by segment linkage in three dimensions would
follow a unit slope if the rates of segment linkage were
comparable, on average, in both directions (shaded bar in
Fig. 19). Preferential linkage in either direction would lead
to displacement discrepancies relative to 2-D expectations
and consequent scatter on the D,,,/L diagram.

7. Conclusions

The magnitude of maximum displacement along a frac-
ture depends on both dimensions of its geometry (length and

height) in addition to driving stress and rock mass
properties. As a result, relating Dp,x to map length (or
down-dip height) alone provides an incomplete assessment
of the control of displacement magnitude by this fracture
dimension. Although D,,,,/L diagrams relate only two of the
three key parameters (D, and L but not H), the dependence
of Dy, on aspect ratio can be represented, with a small
increase in complexity, on these diagrams (Figs. 13 and
14). Because particular mechanisms such as mechanical
interaction and linkage affect the aggregate shapes of frac-
tures and fracture arrays in 3-D, scatter on D,,,,/L diagrams
can represent variations in fracture aspect ratio.

The deformation bands investigated in this paper are
confined to a particular layer within the Entrada Sandstone,
and hence have a fixed maximum height. Increases in their
map lengths require that their aspect ratios also increase,
leading to a systematic reduction in the amount of displace-
ment they can accommodate per unit length and shallower
slopes on the D,,/L diagram. Formation and growth of
deformation bands is sensitive to rock properties, similar
to other classes of fractures such as anticracks (compaction
seams, stylolites) and dilatant cracks. A nonlinear 3-D
displacement—length scaling relation is likely to be
associated also with these classes of structures, rather than
a linear one on a D,,/L diagram, provided their heights
remain limited by the layer thickness. Because faults (with
well-developed slip surfaces) readily cut across bedding,
scaling relations for faults (or faulted deformation bands)
are less strongly affected by stratigraphy, leading to fault
shapes that produce a unit power-law slope on the D,,/L
diagram. As a result, standard displacement—length scaling
relations (with unit slopes) are most applicable to faults.

The hypotheses presented in this paper can be tested by
measuring Dy,.x, a, and b for deformation bands, faulted
bands, and other fracture types in relation to the layer thick-
ness. Stratigraphically or rheologically confined fractures
that are sufficiently long for their aspect ratios to exceed
5-10 should provide reliable data sets for a 3-D analysis
of displacement—length scaling. We anticipate that other
fracture types, such as dilatant cracks and stylolites (or
compaction seams), should exhibit aspect-ratio scaling if
they are mechanically confined to particular beds, leading
to progressively larger aspect ratios and, potentially,
nonproportional displacement—length scaling.
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